Specification of Thermoelectric Module

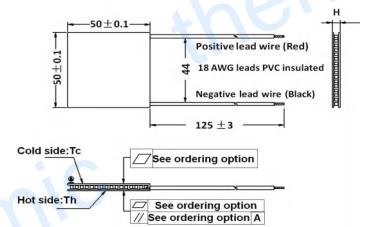
TEC1-12718N

Description

The 127 couples, 50mm x 50mm size module is a single stage module which is made of our high performance ingot to achieve superior cooling performance and 70°C or larger delta Tmax, is designed for superior cooling and heating applications. Beyond the standard below, we can design and manufacture the custom made module according to your special requirements.

Features

- No moving parts, no noise, and solid-state
- Compact structure, small in size, light in weight
- Environmental friendly
- RoHS compliant
- Precise temperature control
- Exceptionally reliable in quality, high performance


Application

- Food and beverage service refrigerator
- Portable cooler box for cars
- Liquid cooling
- Temperature stabilizer
- CPU cooler and scientific instrument
- Photonic and medical systems

Performance Specification Sheet

Th (°C)	27	50	Hot side temperature at environment: dry air, N ₂	
DT _{max} (°C)	70	79	Temperature Difference between cold and hot side of the module when cooling capacity is zero at cold side	
U _{max} (Voltage)	15.8	16.6	Voltage applied to the module at DT _{max}	
I _{max} (Amps)	17	17	DC current through the modules at DT _{max}	
Q _{Cmax} (Watts)	165.3	182.4	182.4 Cooling capacity at cold side of the module under DT=0 °C	
AC resistance (Ohms)	0.71	0.78	The module resistance is tested under AC	
Tolerance (%)	± 10		For thermal and electricity parameters	

Geometric Characteristics Dimensions in millimeters

Manufacturing Options

A. Solder:

B. Sealant:

1. T100: BiSn (Tmelt=138°C)

1. NS: No sealing (Standard)

2. T200: CuAgSn (Tmelt = 217°C)

2. SS: Silicone sealant

3. T240: SbSn (Tmelt = 240° C)

3. EPS: Epoxy sealant

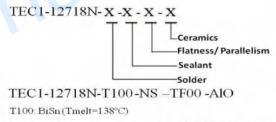
C. Ceramics:

D. Ceramics Surface Options:

1. Alumina (Al₂O₃, white 96%)

1. Blank ceramics (not metalized)

2. Aluminum Nitride (AlN)

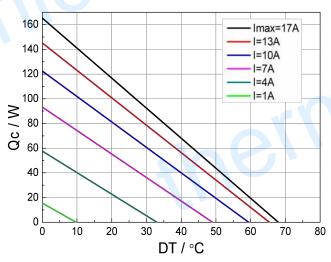

2. Metalized

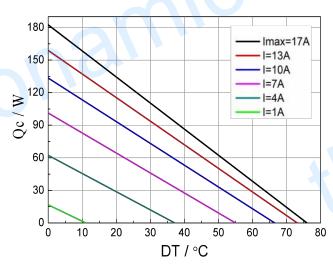
Ordering Option

Suffix	Thickness	Flatness/	Lead wire length(mm)
	H (mm)	Parallelism (mm)	Standard/Optional length
TF	0:3.9± 0.1	0: 0.1/0.1	125±3/Specify
TF	$1:3.9 \pm 0.05$	1: 0.05/0.05	125±3/Specify

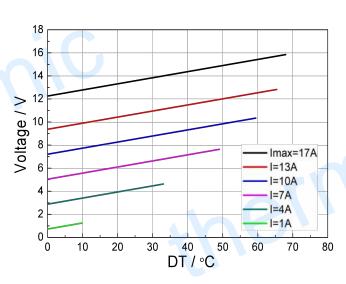
Eg. TF00: Thickness 3.9 ± 0.1 (mm) and Flatness 0.1/0.1 (mm)

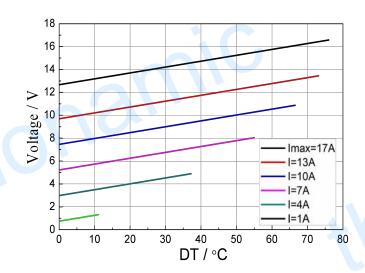
Naming for the Module

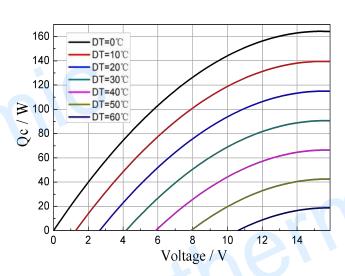

NS: No sealing AlO: Alumina (Al2O3, white 96%)
TF00: Thickness ±0.1(mm) and Flatness/Parallelism: 0.05/0.05(mm)

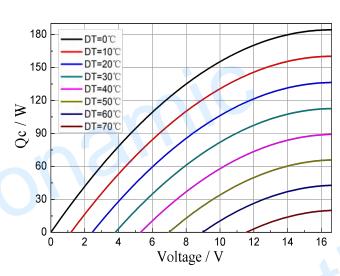

Specification of Thermoelectric Module

TEC1-12718N

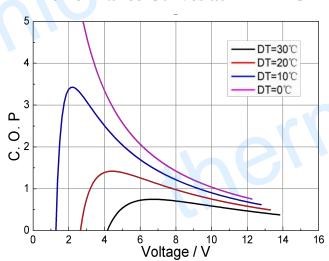

Performance Curves at Th=27 °C

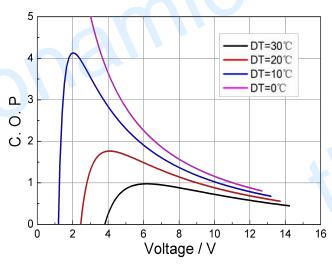

Performance Curves at Th=50 °C



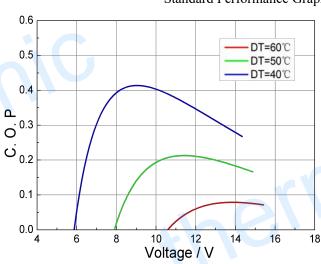

Standard Performance Graph Qc= f(DT)

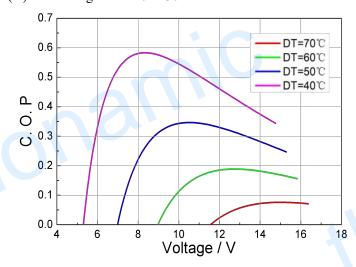
Standard Performance Graph V= f(DT)


Standard Performance Graph Qc = f(V)


Specification of Thermoelectric Module

TEC1-12718N




Performance Curves at Th=50 °C

Standard Performance Graph COP = f(V) of DT ranged from 0 to 30 °C

Standard Performance Graph COP = f(V) of DT ranged from 40 to 60/70 °C

Remark: The coefficient of performance (COP) is the cooling power Qc/Input power ($V \times I$).

Operation Caution

- Attach the cold side of module to the object to be cooled
- Attach the hot side of module to a heat radiator for heat dissipating
- Operation below I_{max} or V_{max}
- Work under DC

Note: All specifications subject to change without notice.